Identification for Red Automobile Based on Cifar-10 Using Machine Learning Models
نویسندگان
چکیده
Abstract Algorithms were made and improved across time in different application fields to help them better fit solve problems that human encounter. Specifically, this paper focuses on the identification mission, is commonly needed used by governmental facilities police departments track certain objects. However, it not always easy, methods invent test these algorithms, along with a vast dataset collected for use, so they can be examined before putting into real-life use. An existing called Cifar-10 was introduced chosen, used, design examine accuracy of an method. This mainly red automobile model. The experimental results demonstrated effectiveness Further usages similar models will also applicable corresponding adjustments, hoping make other areas fulfilling goals.
منابع مشابه
Machine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملIdentification Psychological Disorders Based on Data in Virtual Environments Using Machine Learning
Introduction: Psychological disorders is one of the most problematic and important issue in today's society. Early prognosis of these disorders matters because receiving professional help at the appropriate time could improve the quality of life of these patients. Recently, researches use social media as a form of new tools in identifying psychological disorder. It seems that through the use of...
متن کاملConvolutional Deep Belief Networks on CIFAR-10
We describe how to train a two-layer convolutional Deep Belief Network (DBN) on the 1.6 million tiny images dataset. When training a convolutional DBN, one must decide what to do with the edge pixels of teh images. As the pixels near the edge of an image contribute to the fewest convolutional lter outputs, the model may see it t to tailor its few convolutional lters to better model the edge pix...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2023
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2428/1/012040